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SUMMARY

We consider a problem which arises in the numerical solution of the compressiblé two-dimensional or
axisymmetric boundary-layer equations. Numerica! methods for the compressible boundary-layer equa-
tions are facilitated by transformation from the physical (x ,y) plane to a computational (€M) plane in
which the evolution of the flow is "slow" in the time-like § direction. The commonly used Levy-Lees
transformation results in a computationally well-behaved problem, but it complicates interpretation of
the solution in physical space. Specifically, the transformation is inherently nonlinear, and the physical
wall-normal velocity is transformed out of the problem and is not readily recovered. Conventional
methods extract the wall-normal velocity in physical space from the continuity equation, using finite-
difference techniques and interpolation procedures. The present spectrally-accurate method extracts the
wall-normal velocity directly from the transformation itself, without interpolation, leaving the continuity
equation free as a check on the quality of the solution. The present method for recovering wall-normal
velocity, when used in conjunction with a highly-accurate spectral collocation method for solving the
compressible boundary-layer equations, results in a discrete solution which satisfics the continuity equa-
tion nearly to machine precision. As demonstration of the utility of the method, the boundary layers of
three prototypical high-speed flows are investigated and compared: the flat plate; the hollow cylinder;

and the cone. An important implication for classical linear stability theory is also briefly discussed.

+ This work was conducted partially during the author’s period of tenure as a National Research Council Associale al
NASA Langley Research Center. Completion of the work was accomplished under NASA Contract NAS1-18599, Task
C-3, by the Theoretical Flow Physics Branch, Fluid Mechanics Division, NASA Langley Rescarch Center, with Analyti-
cal Services and Materials, Inc.



1. INTRODUCTION

In modern aerodynamics, the boundary-layer approximation is an invaluable tool of widespread
applicability. Although it is still beyond the capability of exisling supercomputers to solve the
compressible Navier-Stokes cquations for complcu; acrodynamic configurations, it is commonplace for
engineering purposes to patch inviscid "outer” solutions to the Euler cquations with "inner" solutions 10
the boundary-layer cquations 1o obtain realistic lift and drag cstimates. A different application, and the
motivation for this work, lics in the arca of stability and transition, for which solutions to the
boundary-layer equations provide the mean velocity and temperature distributions necessary for linear
and nonlincar stability analyses. In this lauer context, accuracy is quite important, since, in general, the

stability of wall-bounded flow is extremely sensitive (0 variations in the mean.

The boundary-layer equations define an  initial-boundary-value-problem (IBVP) in which the
strcamwise spatial coordinatc is time-like. The solution is obtained by streamwise marching procedures.
The equations are extraordinarily "stiff", particularly for high-speed compressible flow. Consequently,
only implicit marching techniques have mel with practical success (for example, see the finite-
diffcrence method of Harris and Blanchard [1], or the spectral collocation method of Pruett and Strectt
[2]). Depending on the geometry of the flow, the time-like derivative may either enhance or undermine
the diagonal dominance of the Jacobian used in the iteration procedure. To facilitate the numerical
solution it is customary to transform the boundary-layer equations from physical (x,y) space to a com-
putational (§,n) space in which the time-like derivative has "nice" properties. In the ideal situation, a
similarity solution cxists, and the time-like derivative vanishes identically with the proper similarity
transformation. Similarity solutions exist, however, only for a limited class of flows (e.g.; flow over a
flat plate in the absence of a streamwise pressure gradient). For non-similar flows, it is desirable that
the time-like evolution in the transform plane be "slow", and that the time-like derivative contribute to

diagonal dominance of the Jacobian.
One transformation which exhibits these traits for a wide class of boundary-layer flows is that
known commonly as the Levy-Lees transformation [3}*. Although the Levy-Lees transformation results

in a computationally well-behaved problem, it complicates interpretation of the results in physical



space, relative to the more straightforward transformations used for specialized applications by Duck
{41, and by Pruett and Strectt [2]. First, it is inherently nonlinear, an additional reason why fully-
implicit methods are necessary. Second, the physical v-velocity is transformed out of the computa-
tional problem and is not casily recovered. For some applications, this is not of major concern. For
example, classical linear stability analyses, which invoke the parallel-flow approximation, disregard the
wall-normal velocity. It is now rccognized, however, that the non-parallel effects on the stability of a
high-speed flow can be significant {5], and mcthods arc being adapted and developed to treal non-
parallelism. Among these are spatial direct numerical simulation (SDNS) [6], multiple scales analyses
(MS) [7.8], and a recent scheme based on the 'parabolizcd stability equations (PSE) [9,10]. Each
requires accurate determination of wall-normal velocity, and the MS and PSE methods require its gra-
dient as well. The quality (smoothness) of the solution is of particular importance whenever the appli-

cation requires differentiated velocities.

Conventional methods cxploit finite-difference techniques and obtain the wall-normal velocity
from the continuity equation (J. E. Harris, private communication). The method presented here,
designed as a companion to the spectral collocation method for the compressible boundary-layer equa-
tions (CBLE) developed by Pructt and Streett [2], cnjoys two major advanlages over conventional
approaches. First, thc wall-normal velocity is computed to spectral accuracy. Second, the wall-normal
velocity is extracted directly from the coordinate transformation, leaving the continuity equation avail-
able as a check on the quality of the solution. Using the method of [2] for the CBLE, and the present
method to extract wall-normal velocity, we obtain a discrete solution which satisfies the continuity
equation nearly to machine precision. Moreover, we obtain sccond derivatives of temperature and velo-
city distributions which are smooth to at least seven decimal places.

At the heart of the present method lics the non-trivial evaluation of the quantity 1,. In the next
section the governing equations and non-dimensionalization are discussed, and the Levy-Lees transfor-

mation is presented. The third section details the numerical method, focusing on two independent

*White [3], however, refers 10 this as the Tllingworth-Levy-Lees-Dorodnitsyn-Probstein-Elliot transformation,
mentioning also the contribution of Mangler.



OO AL RN B

0

T Y N R A |

ATy

R T

I

derivations for 7,, both of which lead to complicated cxpressions. In the fourth section, in which we
validate the mcthod, both derivations of 1, arc shown to give virtually identical numerical results. The
fifth section provides an application of the method whercby the high-speed boundary layers of a flat
plate, a hollow cylinder, and a sharp cone are compared, with particular atiention to their respective
wall-normal velocity distributiqns. An important implication regarding the lincar stability of the flow

along a cone is also discussed. Finally, brief concluding remarks are offercd in the last section.

2. GOVERNING EQUATIONS

We consider the laminar boundary-layer flow along a two-dimensional or axisymmetric body at
zero angle of incidence. In regions of the flow in which the boundary-layer approximation is valid, the

flow is governed by [1]

g—x(rjpu) ' g—y(ripv) =0 (1a)

pu%;— + pvg—‘yf = —gf + ri,.g—y[r’ug—;} (Ib)

Pu% + py gyT = u—gf + %ﬁg—y[ﬂk%} + u[g—;]z | (IC)!
p={Llor (1d)

y=vRey : ¥ =1Rev (1e)

Dimensionless cquations (la,b,c) arc derived from the compressible Navier-Siokes equations via the
boundary-layer approximation [3], and describe, respectively, conservation of mass, streamwise momen-
tum, and encrgy. Equation (1d) is the cquation of state, and Eq. (le) defines a convenient scaling,
Here, we assume the fluid to be an ideal gas. For j=0 and j=1, Egs. (1) describe, respectively, two-

dimensional and axisymmelric boundary-layer flow.

In Egs. (1), x is the arc length along the body mcasured from the stagnation point, y is the wall-

s s s 1 3 1
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normal coordinate, and r = ry+ ycos¢ is the radial coordinate from the axis of revolution, as shown in
Fig. 1. In general, ro = ro{x) and ¢ = ¢(x). Two axisymmetric bodics of particular interest here are
the cone and the hollow cylinder, the latter of which is the axisymmetric analog of the flat plate. For
the cone, ¢ is the (fixed) cone half-angle, and ry(x) = xsind. For the hollow cylinder, r is the (fixed)

radius, and ¢ = 0.

In Egs. (1), 4 and v denotc dimensionless velocity components in the x and y dimensions,
respectively. The remaining dimensionless variables T, p, W, and x are, respectively, the temperature,
density, viscosity, and thermal conductivity. Lengths are normalized by an arbitrary reference length

L", and flow quantities are normalized as follows:

/4 1%
u=— ; v=— ; p= L. ; (2
U, Uy Pr
Tﬁ b} N *2 9 * 7 K‘
r prur Ky r

Throughout this paper, dimensional quantities arc denoted by an asterisk. In Egs. (2), the reference
velocity u, and the reference density p, are arbitrary, and the reference temperature, viscosity, and ther-

mal conductivity are defined as

T; = oW =ptT) s k=x"T) (3)

Governing equations (1) are closed by assuming w(7T) and x(T') to vary according to the Sutherland law;
namely,
T¥(1+Cy) 198.6 °R

C1=

4
T+C, ; T C)]

u:](:

The dimensionless paramcters which arise as a result of the scalings in Eq. (2) are the Mach
number M, Reynolds number Re, the Prandtl number Pr, and the ratio of specific heats y. Specifically,

these are defined as



u: :u‘L“ : C* L) C'
M=t Re=P o poE 4= ®
a, K, Xr CV

where a; = VYR, T; is the reference speed of sound, Ry is the ideal gas constant, and C . and C; are,

r

respectively, the specific heats at constant pressure and constant volume. For ideal gases, CP' and C,
L] * *
are constant, and R, =C, - C,.

The Levy-Lees transformation [3], commonly used to facilitate the numerical solution of Egs. (1),

has the following form:

Ex) = );p, UM rdldx (6a)
\fﬁe—peuer{;’j_&

y)= ——7— d 6b
nx.y) T it P (6b)

r i 1 (j=0)
|| - 6c
l {’O] 1+ 222 (=) 0

]

In Eqs. (6) and subsequent discussion, subscript "¢" denotes edge values, which, in general, depend on

x. With the further wransformations
F=X . 9= ?T— (7a)
yo— 2% lgon pir’ (7b)
peucn ry/ | ox N2

governing Egs. (1) take the following form in the transform plane [1]:

Wt
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m PR +F =0

) du,
._a_F_'_}_V_QE__a_ﬁJH_y_ +.2_§L(F2_9):0 (8)

0% an Bn[ Gan} u, d

2
00 00 0 |90 o ae22iB|OF| _
2§Fa§+van an{[ 6 an {y— DM 6| am =0

We note that wransformed govemning equations (8) make use of

L _ 9
Pe ®

1
0
which is obtained from the cquation of state (1d) and the boundary-layer approximation —gﬁ =0.

In the expericnce of the author, transformation (6) is essential for the accurale numerical solution
of a non-similar boundary-layer flow in which the streamwise velocity profile becomes "thinner” as one
proceeds downstream; e.g., boundary-layer flow along a sharp cone. For example, when the spectral
collocation method of Pruett and Sireett [2] using the straightforward transformation of Duck [4] is
applied for the case of M,=6.8 flow over a 7° half-angle cone, the Jacobian of the iteration procedure
becomes very ill-conditioned. For a highly-resolved grid the condition number can be O(10') or
larger. In contrast, when transformation (6) is incorporated into the method, the condition number for a
highly-resolved grid is typically O (10%). In the former case, the extreme ill-conditioning prevents full

convergence of the iteration procedure, resulting in an excessively noisy solution.
3. NUMERICAL METHODS

From Egs. (7b) and (9) one obtains the following expression for the wall-normal velocity v in the

transform (€,n) plane:

v
vEm = o=

2j
U U rg 14 F a’l’]
S &
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Provided the quantities on the right hand side of Eq. (10) arc known, the determination of v is trivial.
The difficulty with Eq. (10), however, is that a closed-form expression for 1, is not readily available,
nor is its form simple. Because of the complicated nature of n,, we present two independent deriva-
tions which we then use for (numerical) cross-validation. Ih the first method, 7, is obtained from the
Jacobians of wransformation (6) and its inverse. In the second method, m, is shown to be the solution
of a lincar Fredholm integral equation whose coefficients are coneructed: from information available
from the solution of Egs. (8). For both methods, the computational effort required to evaluate 1, (and

subsequently v) is insignificant relative to that required to solve boundary-layer Eqs. (8).

Before procceding, we note that the cvaluation of ¢ in the boundary-layer Egs. (8), and both
methods for evaluating n,, make use of the inverse transformation corresponding to Egs. (6). Whereas
the inverse of (6a) is straightforward and is omitted, the inverse of (6b) requires the solution of a qua-

dratic equation which results in the following numerically-stable form:

Rep,u, g 1T VT
yem=\ 5, (112)
T+ V150 u=h
where
2¢cosd y .
CEn=—73— (11b)
0

Note that the planar (j=0) expression must bc cvaluated to obtain y,p prior to evaluation of the

axisymmetric (j=1) expression.

Method 1

From Egs. (6) we obtain

N anine

1} .

[N ETR |
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o8 _df _|dx .
ox  dx [dé} (122)
m (]
- {En—} (12b)
om __ondyd§
ox  dy of dx (12¢)

To derive Egs. (12) we have made use of the fact that the product of the Jacobians of transformation
(6) and its inverse must yicld the 2x2 identity matrix. Two of the factors necessary to evaluate (12¢)

are easily obtained from Egs. (6). They are

% = peueuer()z'i (13a)
dy _ %6 (13b)

M~ \Re pou.r’

The remaining factor y is complicated. After straightforward though tedious differentiation of Eq. (11)

with respect to &, we oblain

1 1 dp. 1 du, N3 .
do. —}yw—f— % -0

1_ide 1 B 4= 2
B 2% p. db u d§ VRe p.u. 595 a&

&n =
% Ldro  odol 112 d0 o ,d0) Yo 1w .
L g " d&} rOL 7 +m"¢d§] e “ronc & U

(14)

We note that Leibnitz’ Rule has been exploited for differentiation beneath the integral sign in Eq. (11a).
As in the case of Eq. (11), one must evaluate the planar (j=0) expression prior to the axisymmetric

(j=1) expression. The wall-normal velocity v follows immediately {rom Eqgs. (14), (12¢), and (10).

Derivatives of the edge and geometry data T(€)e (p. .4, M. 7o.0) are evaluated by the chain rule as

follows:

dr _ 4t 48y as

dE  dx dx
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where %E— is given in Eq. (13a). We defer discussion of the procedure for numerically evaluating the

integral expressions in Egs. (11) and (14) until after the the presentation of Method 2.

Method 2

First, some mathematical preliminaries are in order. In the steps to follow, we exploit the chain

rule

2 _ 2045 20
x 9 dr T om ax (16)
and the integral transformation
y n 3
£h0>dy = fh(n)gny—dn 17
]

where h is an arbitrary function of (§,n) with & fixed, and where % is given in Eq. (13b).

Differcntiating transformation (6b) with respect to x, we obtain

M (r yy = D 2P

_TLdue . _‘r‘Ld’o j_ ‘f—pzuer6 a
L el +,{ sy a®

rodx 2§dx ‘IEE

By applying Leibnitz’ Rule to differentiate under the integral sign, and by invoking the product rule, we

obtain

3 T 1o ¢ 99 19, Y130
axiedy J[e P ax}dy 1o ? ’{ez % ? 19
From definition (6¢) and some algebraic manipulation, the following expression for g—; results:
o umq)i P L P 20)
ox dx

Expanding the first inteéﬁlvékpression on the right hand side of Eq. (19) using Egs. (17) and (20), we

N
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obtain the following expression in terms of (€,n):

AN 2 do 1
5[9 Bxdy I Re Polie T lanq> " —qx— l +J;tdn @h

Similarly, the second integral expression on the right hand side of Eq. (19) is derived to be

y n n
L) £+l 9 1 06 an
= as (1L ov AL 2
092 axdy '\fRepeuer{){dxb[ea !9 on ox } 22)

where chain rule (16) has been invoked for %:—

The desircd integral form is obtained by combining Egs. (18-22), whereby

My | LGP LA 1 dE S, d0
@,)—Le dx+uedx o e ] @3)

dr
We note that certain terms containing ri—dx—o— have exactly canceled in the derivation of Eq. (23).

0

Expression (23) is a linear Fredholm integral equation of the form

L]

gE&mn) = t[w E&mqEn)dn + pEM) (24a)
where
_on
gE&m = < (24b)
wem = =28 (24¢)

0 on

p&n) = £ &N +g @4 EN) - eEn) (24d)
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and where

L dp. 1w 14y . o do

FO = e "~ e (24e)
_doodo 1 dro]
g(&)—}[tdmbdx + e de (24f)
11
dEn) = {T‘“‘ (24g)
e@m)s—é}l@— @4n)
210 %

We relegate the details of the discretization of Eq. (24a) to the Appendix. We note, however,
that Eq. (24a) is linear and its matrix analog is N th-order; consequently, the computational effort neces-
sary to extract v is insignificant relative to that of solving Egs. (8), which require the iterative solution

of systems of order 3M.

In practice, whether by Mcthod 1 or Method 2, cvaluation of M, occurs along contours of con-
stant §. For & fixed, the integrals which appear in both methods (for example; in Eqgs. (13) and (24))

assume the form

]
im) = [h(m)dn (25)
0

where 4 is again an arbitrary function of n. It remains to describe their spectrally-accurate numerical
approximation. For this purpose, let the computational domain 0 < T £ Myax be partitioned into N

subintervals such that 0=n(<T);<M< - - - <Ny=Npax. At the grid points N, we have

" ] 0 (n=0)
M) =TAM) 5 AMm) =], (26)
k=0

[ hydn (n=12,..N)

nn~1

1If h,; =h(n,), and i, and Ai, are the discrete approximations of i (,) and Ai (m,,), respectively, then the
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discrete analog of Eq. (26) is the following:
=M 5 K =QF @7

=0

InEq. 27) Q isan N X(N +1) quadrature operator, and, for convenience, the following vector notation

is adopted:

ho hy
h ho

h= ; i_z)le (28)
hy hy

Conventions similar to Egs. (28) hold for all other vector quantities.

Eq. (27) is general in the scnse that Q can represent any quadrature rule. For example, if the tra-
pezoidal quadrature rule is adopted, then Q is bidiagonal and T approximates i (1) to second-order
accuracy. For the hydrodynamic stability applications which motivate this work, we are interested in
attaining highly accurate and smooth solutions. Accordingly, we specialize Q to a collocation method
based on Chebyshev polynomial approximation, for which Q is a dense matrix and for which spectral
accuracy is attained. The collocation method applied here to the extraction of the wall-normal velocity
is described in [2], to which the reader is referred for greater detail. For completeness, we summarize

bricfly below.

Let continuous non-periodic function A (f}) on [-1,1] be approximated by a finite serics expansion

Ay (T) in an orthogonal basis set of Chebyshev polynomials T, (f}), namely

N -~

hv() = XA, T,(R) (29a)
n=(0

T, () = cos [n cos"n} (29b)

where coefficients £, are termed the "spectrum” of Ay (f). Using the "natural” Gauss-Lobatto set of
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collocation points

f,=co0sz, ; 2z,=— ; (=012..N)

we obtain from Eq. (29) the discrete Fourier cosine transform

N ~
by = by () = 3y cos B
k=0 N

The corresponding discrete inverse transform gives the spectrum B namely

where

2 k=0 or k=N
%=1 0<k<N

It is convenient to express Eq. (32) as a matrix-vector operation

= -
h ZPNh

(30)

€2

(32a)

(32b)

(33)

where Py is a dense (W +1)xX(V +1) matrix whose elements are available by inspection from Egs. (32).

Interpreted in the light of transform pair (31) and (32), Egs. (29) define the spectral interpolation

polynomial, exact, by definition, at the collocation points, Unlike polynomial interpolating series defined

on equally spaced intervals, series (29) converges uniformly to ~(f]) as N —eo. Morecover, it can be

shown that, for continuously differentiable functions h, coefficients A, decay to zero faster than any

finite power of 1/N as N —eo, This is termed "spectral convergence”.

Now, to form quadrature operator Q we consider '

" 1

y "oy N M
[ hdnzE, = [ mdn= [ TATMEN = Th [ T.@)dn
ﬂn—l":O k=0

M1 Ny fin-1

(34)

P ren e
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In matrix-vector form, Eq. (34) becomes

E,=Ryh ' (35)

where E , is an N-vector and Ry is a dense Nx(N+1) matrix whose elements are obtained from Eq.
(34) with the help of Egs. (29) and (30) as follows:
Ik

Rin = - J- sinz cos(kz )dz (r(1k==0]i2i"...’-],\1/\?) .

Zg-1

From Egs. (33) and (35) the N x(N+1) spectral quadrature operator Q is defined as

Q =RyPy 37

We note that a continuous mapping T=n(f}) is necessary to take the natural Chebyshev domain
—1<R<1 onto the computational domain 0<n<nyax. Such a mapping is also useful to redistribute collo-

cation points, clusiering them in regions of high gradients. In practice, the metric Z—?‘, computed either

analytically, or numerically o spectral accuracy, is incorporated directly into quadrature operator Q.
Finally, we note that Q should be computed initially in double-precision arithmetic to avoid catas-
trophic loss of significance, The double-precision representation is subsequently truncated to single pre-
cision for numerical quadrature via Eq. (27). Since Q is computed but once, the additional computa-

tional effort is minimal.

We close by summarizing briefly the complete algorithm for extracting wall-normal velocity, as
integrated into the spectral collocation boundary-layer algorithm of Pruett and Streett [2]. Following
[2], governing equations (8) are solved for discrete marching steps Eg<€;<€,< - - -, each corresponding
to a unique streamwise station. Immediately available from the converged boundary-layer solution at
each fixed & are the quantities 8, 6, 6, and + which appear in the integrands of Egs. (11a), (14), and
(24). These integrals are evaluated numcrically to spectral accuracy following the quadrature procedure
of Egs. (27-37). In the discrete approximation, the integral expressions are vector quantities. Also

needed at each discrete & are certain scalar quantities: for example; f(§) and g(§) in Egs. (24) of
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Method 2, or the coefficient of y,p in Eq. (14) of Method 1. These are readily evaluated from the
discrete edge and geometry data 1[§(x)]. Currently, we use cubic splines for smooth intcrpolation of 1
as well as for computation of derivatives of the form dt/dx. Following the evaluation of all necessary
scalar and vector quantities at fixed &, the discrete approximation of 1, is obtained either from Egs.
(12-14) in Method 1, or from integral equation (24) in Method 2. Wall-normal velocity is obtained
subsequently from Eq. (10) and the boundary-layer solution (V ,F ,0). Despite the awkward nature of the
expressions which comprise Methods 1 and 2, their cvaluations are straightforward, are computationally
efficient, and involve only the numerical machinery alrcady in place for the solution of boundary-laycr

equations (8).

4. CODE VALIDATION

Our purpose here is to offer reasonable validation of the present method. To obtain the results of
this section, we solve Egs. (8) by the fully-implicit method of Pructt and Streett {2], which has been
modified to incorporatc the Levy-Lees transformation (6). We exploit second-order backward
differencing in the time-like dimension, although the method allows up to Sth-order differencing. For
convenience, the marching scheme uses equally-spaced steps in physical space. A further modification
permits the option of either preconditioned Richardson iteration or Newton iteration within each implicit
marching siep. Typically, we iterate using the Richardson scheme until the discrete residual is small
enough so that one final (computationally-intensive) Newton iteration achieves "full" convergence. Fol-
lowing convergence of the iteration, the wall-normal velocity is extracted by the spectral collocation
method presented herein.  All computations assume that the wall is adiabatic, although the boundary-
layer code permits fixed temperature wall conditions as well. The results shown below were obtained
using 102 (N=101) collocation points in the wall-normal m direction, and constant increments of
Ax" = 0.1 ft. in the marching direction. The following transformation has been used to map from the
Chebyshev domain 7| €([-1,1] to the computational domain 1 €[0,nyax 1, as discussed in the previous

section.

0.5nax | 1-tanh(o) 1)

nMm) = - (38)
1-tanh 0.50(1—1\)]

|
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In Eq. (38), ¢ is a free parameler which controls the strength of stretching. The results shown use
Nuax=21 and 0=0.7, chosen after some numerical experimentation. For a well-resolved grid, the solu-
tion is not particularly sensitive to the choice of 6. However, it is important that Tiyax be sufficiently
large that the far-field boundary condition does not "pinch” the boundary-layer fHow. Qur cxperience is
that Tiyax should be chosen so that y* (Maax) is 2 10 3 boundary-layer displacement thicknesscs from
the wall. We note that 102 collocation points are far more than the 40 or so necessary 1o obtain 3-digit
"engineering” accuracy. In fact, as will be shown, at this resolution velocity and temperature distribu-

tions at fixed & are smooth to 13 digits.

We take the flow parameters and the geometry of the validation case from the high-speed
(M .=8.0) wind-tunnel experiment of Stetson et al on a sharp conc at zero angle of incidence [11].

These are:

0=7° ; M, =68 ; T,=128°R ; Re =143x10° 1" 39

where Re; is the unit Reynolds number based on edge conditions. Except quite near the tip, the flow
on a sharp cone exhibits conditions at the boundary-layer edgc which are approximately constant,
Accordingly, we assume that the edge values remain constant in x, and we set reference values equal 10
their respective edge values; e.g., uy=u,. We note, however, that both methods for extracting v have

been validated for the fully general case in which both the geometry and edge data vary with x.

Figure 2 compares the radial velocity obtained by the present method with the results of a para-
bolized Navier-Stokes (PNS) calculation using the well-tested code of Korte [12]. The PNS code
exploits finite-difference techniques and is of second-order accuracy in both the marching (axial) s and
cross-stream (radial) r directions. The velocities (u’v’) computed by the PNS code are in cartesian
coordinates, and for comparison, the results of the boundary-layer calculation are wransformed accord-
ingly. The PNS scheme is fully explicit and the marching step size is the maximum allowed by stabil-
ity (CFL) considerations. The PNS computation uses 150 grid points in the radial dimension, approxi-
mately 30 of which lie within the boundary layer. At this resolution, the PNS calculation is fairly

severcly under-resolved in the radial direction as indicated by the clearly visible grid-scale oscillation,
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In fact, as can be inferred from Harris [1], approximately 200 points are necessary to fully resolve the
boundary layer region to engincering (3-digit) accuracy using 2nd-order finite difference methods.
Unfortunatcly, it is impractical for cxisting computer resources to pack significantly more points within
the boundary layer since, in the fully explicit PNS code, the marching step size decreases as Aryé,
where Aryyy is the minimum grid interval in the radial dimension. Similar computational barriers were
encountercd when attempting to compare the present method against a compressible Navier-Stokes (NS)
calculation using the finite-volume code of Jacobs [ 13], for which it was impractical to resolve the flow
to the degree desired. Despite these difficulties, the radial velocities obtained from the PNS and
boundary-layer (BL) computations, which are compared at s=3.28 fi. (1 meter) in Fig. 2, are in reason-
able agreement. The maximum velocity, the boundary-layer edge location, and the far-ficld decay of v’
all agree well. We note also that the shock obliqueness angle derived by the PNS calculation is about
11°, for which the corresponding post-shock Mach number is 6.8, in concurrence with the experimental
results of Stetson er al and the edge Mach number used for the BL calculation. We further mention

that the (under-resolved) NS [13] and PNS [12] calculations are in close agreement.

The present method has been further validated by Kopriva (in unpublished work), who has
employed the spectral-collocation BL code to check recent adaptations of his spectral multidomain code
(inviscid) [14] to incorporate the viscous terms of the CNSE. Agreement between Kopriva’s
moderately-resolved NS computations and the present method is quite good for test cases which include

Mach 2 flow over a circular cylinder and Mach 2.2 flow over a flat plate.

The previous checks against existing codes assure us that there are no grievous errors in the
current method of extracting wall-normal velocity. We turn now 1o self-consistency checks. One
motivation for developing independent methods for evaluating m, is to provide a check otherwise una-
vailable. For the same test case as before, with parameter values given in Egs. (39), Fig. 3 compares
M, at x"=2.0 ft. as computed by Methods 1 and 2. These results appear virtually identical in Fig. 3,

and, in fact, they agree to at least 11 significant digits at every gridpoint.

As mentioned in the introduction, the current method also leaves the continuity equation available

as a check on the quality of the discrete solution. For later use, it is preferable to expand continuity

i ey

b

I
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Eq. (1a), whereby we obtain the following expression, which is valid for flat-plate, hollow cylinder, and

cone gcometry:

dpu) . d(pv) . .pusing .pvcosd _
3 + p I i =0 40)

Figure 4 presents the discrete residual of Eq. (40) at x"=3.0 . along the cone, computed by summing
the four terms on the left hand side. Again, the parameter values are those given in Eqs. (39). Deriva-
tives are evaluated in computational space by the appropriate chain rules, thereby avoiding interpolation
in physical space. The continuity equation is satisfied to approximately 11 orders of magnitude. That
there remains considerable structure in the wall-normal distribution of the residuals suggests that, with
further tuning of ¢ and N, onc could likely drive the residual at least another order of magnitude

toward machine zero (107'%).

One final measure of the quality of the spectral numerical method is the decay of the spectra
(refer to Eq. 32a) as shown at station x*=3.0 ft. along the cone in Fig. 5. The decay of the tempera-
ture, u -velocity, and v -velocity spectra each by at least 13 orders of magnitude implies that the solution
is smooth to nearly the full 14-digit precision of the (Cray 2) machine. The linear decay rate on the
logarithmic scale is indicative of "spectral convergence”, by which we mean that truncation error decays

faster than any finite power of 1/N as N —oo,

Our interest in an accurate and smooth solution is not just academic. Analyses of stability based
on parallel linear stability theory result in eigenvalue problems which require first and second partial
derivatives with respect to y of both the mean u-velocity and the mean temperature. In addition, ana-
lyses based on non-parallel theory require the mean v-velocity and its derivatives as well. For N=101,
gach spectrally-accurate numerical differentiation of the boundary-layer solution results in a loss of
significance of 2-3 digits due to the unavoidable magnification of round-off errors. Yet because of the
initially high quality of the solution, we obtain first and second derivatives which are smooth to at least

10 and 7 digits, respectively.

Finally, we comment briefly on computational efficiency. For N=101, the spectral collocation

method of Pruett and Streett [2] modified for the Levy-Lees transformation (6) requires slightly less
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than one CPU-second per marching step on a Cray 2 supercomputer to solve boundary-layer equations
(8). Of this second, extraction of the wall-normal velocity by Method 2 consumes a small percentage,
whereas the computational requircments of Method 1 are virtually negligible. It was originally thought
that the integral cquation method (Method 2) might enjoy some advantages in the distribution of error.

However, from the data for Fig. 3, it appears that any such advantage is insignificant.

5. APPLICATION

We turn now (o an applicalion of the method to a problem of both longstanding and immediate
interest which concerns the stability characteristics of the boundary layers of cylinders and cones rela-
tive to those of the more commonly studied flat platc. While it is beyond the scope of this paper to
address stability theory per se, some light is shed on stability issues by comparing boundary-layer
"profiles” for the flat plate, the hollow cylinder, and the cone.

Here we consider the same flow parameters and conc geometry given in Egs. (39). Presented for
comparison, the hollow cylinder can be regarded as the axisymmetric equivalent of the flat plate (that
is, the boundary layer is assumed to have no thickness at the sharp leading edge). The radius of the
cylinder is taken to be ry=0.3684 ., equivalent to that of the cone at station x"=3.0 ft. For reference,
Fig. 6 compares the growth of the three boundary layers in terms of displacement thickness 8" as

defined below [3}:

& {u 8*_}j = Hri{l - %de* @1)

2rg ro Pe U,
As is well known, the self-similar boundary quycrrron lh¢ ,ﬂal, plrzrirtcmgrrows proportionately to Vx*. On
the other hand, the boundary layer along the cylinder is non-similar because the "curvature” X,
quantified by the ratio K=8"/r{, increases in ﬁle streamwise direction due to the growth of 8. Pro-
vided K <1, as is the case here, the displacement thickness on the cylinder exhibits growth much like

that of the flat plate. Also as is well known, the boundary layer on the cone asymptotes to a growth

rate 1/V3 times that of the flat plate, as predicted by the Mangler ransformation [15]. Mangler’s theory

Wi
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ignores transverse curvature and is invalid near the sharp tip of the cone where K is large. As noted by
Malik and Spall [16], the curvature K along the cone decreases in the streamwise direction, in contrast
1o its increase along the cylinder. As they also note, the effect on stability of the disparity in scales is

that the boundary layer on the cone supports higher disturbance frequencies.

Figures 7a-c compare, respectively, the temperature, streamwise velocity, and wall-normal velo-
city distributions of the cone, cylinder, and flat-plate boundary layers at x"=3.0 ft. When the wall-
normal coordinate y~ is scaled by the appropriate displacement thickness, the temperature and stream-
wise velocity distributions of the flat plate, hollow cylinder, and cone “collapse”™ and arc virtually coin-
cident. There is a slight effect due to transverse curvature which tends to produce a slightly "fuller”
u-velocity profile and a "thinner” temperature profile with increasing K. For the parameter values of
the test case, the curvature K values at x'=3.0 fi. arc 0.0, 0.0744, and 0.0440, for the flat plate,
cylinder, and cone, respectively. Our principle interest lies in comparison of the wall-normal velocitics.
Whereas the v-velocity in the flat-plate boundary layer is constant at the edge, that of the cylinder
decays like 1/7 in the far ficld. Otherwise, they are qualitatively similar. In contrast to the hollow
cylinder and flat plate, the cone has v-velocity which changes sign, is negative for large y, and has a
large, nearly constant gradient in the far field. For comparison Fig. 7c also shows the inviscid solution
for the wall-normal velocity, obtained from the code of Marconi and co-workers [17]. Note that the
far-field boundary-layer solution and the inviscid solution have similar trends as anticipated, lending

additional confidence in the method.

To highlight the influence of the differences in wall-normal velocity which are due to geometry, it
is useful to examine the individual contributions of each of the four terms on the left hand side of con-
tinuity equation (40), as shown in Figs. 8. For the flat plate (Fig. 8a), the third and fourth terms vanish,
and the first and second terms exactly balance. For the the cylinder (Fig. 8b) there is a small non-zero
contribution from the fourth term, but the overall picture closely resembles that of the flat plate. In
contrast, for the cone (Fig. 8c), terms 1 and 2 approximately balance in the near-wall region. However,
the third term contains a large contribution in the far field which is offset approximately by the far-field

contribution of the second term.



.22 .

Figure 8c has implications for classical linear stability theory, in which the parallel-flow approxi-
mation plays an important role. In theory, the parallel-flow approximation arises from the recognition
that the wall-layer mean flow evolves slowly in x relative 10 the scale of a typical disturbance
wavelength, in which case certain terms in the linearized disturbance equations are "small” and can rea-
sonably be neglected. In practice (i.c., in stability codes), however, the parallel-flow approximation is

typically implemented by requiring of the mean flow that

- 9 _
y=0 and 5 =0 “42)

Condition (42) is sclf-consistent for the boundary-layer flow along a flat plate or a hollow cylinder in
the sense that a parallel mean flow can simultancously satisfy continuity Eq. (40) and approximation
(42). From Fig. 8c, however, we find that Eqs. (40) and (42) are inconsistent for the cone, since the
term pusing/r does not vanish under approximation (42). Violation of the continuity equation by the
assumption of parallelism is particularly noxious since it leads to inconsistency between the conserva-
tive and nonconservative formulations of the linearized disturbance equations [18]. In fact, Pruett, Ng,
and Erlebacher [18] have shown rigorously that there is no sclf-consistent parallel-flow approximation
for the stability of the flow along a cone. If the stability of a conical flow is properly treated only by
methods which allow non-parallelism, then the wall-normal velocity assumes importance. Conse-

quently, the care which has been devoted here to securing an accurate and smooth determination of v is

not ill spent.

6. CONCLUSIONS

The fully implicit, spectral collocation method developed by Pruett and Streett [2] for solution of
the compressible boundary-layer equations has been extended to incorporate the Levy-Lees [3] transfor-
mation and spectrally-accurate evaluation of the wall-normal velocity. The Levy-Lees transformation is
essential to the stability of the numerical method for certain classes of compressible boundary-layer
flows; however, it renders determination of the wall-normal (v) velocity non-trivial. Two methods of

determining v are presentcd and are shown to be numerically equivalent. The generalized algorithm is

Fn o
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valid for non-similar, two-dimensional or axisymmetric boundary-layer flow with varying edge condi-
tions. Computation on a highly resolved mesh results in a discrete solution which satisfies the con-
tinuity equation nearly to machine precision, while requiring only about one second of CPU time per
marching step on a Cray 2 supercompuler. Because of its generality, and the accuracy and smoothness
of the rdiscrete solution, the present method is well suited to providing the mean-flow velocity and tem-
perature distributions needed for analyses of the stability of compressible boundary-layer flows, whether
by classical linear stability theory or by recent methods which treat non-parallelism of the mean flow.
Since mean-flow non-parallelism can significantly affect the stability of high-speed, wall-bounded flows

[5], the contribution of wall-normal velocity should not be cavalierly disregarded.
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APPENDIX

For completeness, we describe briefly a solution procedure for the discrete analog of integral Eq.

(24a). For fixed &, Eq. (24a) has the form

i}
qm) = {W Mg M)dn + pm) (A1)

Note, by inspection of Egs. (24), g (0) = 0. From (A1) we obtain

Ty

qM) = qMa) = [ wgMdn + (, —pp)) (0 = 123,..N) (A2)

-1

Following the notations regarding Egs. (26-28), the discrete approximation of Eq. (A2) is

M7, =Q W7, + AP (A3)

where W is the NxN diagonal "weighting™ matrix

wi
w2
W= . , (Ad)
WN
and M is the NxN bidiagonal matrix
- | -
-1 1
-11
M = . , (A5)
-11
L J

Q, is the NxN matrix formed by eliminating the first column of the Nx(N+1) numerical quadrature
operator Q (refer to Eq. 37), and Ap, is the N-vector whose components are

App = Pu—Pnt  (n =123, N). Simplifying (A3), we obtain g, as the solution to the Nth-order

(RYERN

R
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linear system

A7, =Ap;, where A=M-Q\W (A6)



1)

2

3

4)

5)

6)

7

8)

9)

10)

11)

-6 -

REFERENCES

Harris, J. E., and D. K. Blanchard, "Computer Program for Solving Laminar, Transitional, or Tur-
bulent Compressible Boundary-Layer Equations for Two-Dimensional and Axisymmetric Flow",
NASA TM-83207 (1982).

Pruet, C. D. and C. L. Strectt, "A Spectral Collocation Method for Compressible, Nonsimilar

Boundary Layers”, Int. J. Num. Meth. Fluids, Vol. 13, No. 6, 713-737 (1991).

White, F. M., Viscous Fluid Flow, McGraw-Hill, New York (1974).

Duck, P. W., "The Inviscid Axisymmetric Stability of the Supersonic Flow Along a Cylinder",
ICASE Report 89-19 (NASA CR-181816) (1989).

El-Hady, N. M., "Nonparallel Instability of Supersonic and Hypersonic Boundary Layers”, AJAA
Paper No. 91-0324, presented at the 29th Acrospace Sciences Mecting, Reno, Nevada, Jan. 7-10,

1991.

Thumm, A., W. Wolz, and H. Fasel, "Numerical Simulation of Spatially Growing Three-
Dimensional Disturbance Waves in Compressible Boundary Layers”, in Laminar-Turbulent Tran-
sition: IUTAM Symposium, Toulouse, France, 1989, eds. D. Amal and R. Michel, Springer-

Verlag, Berlin, 303-308 (1990).

El-Hady, N. M., "Spatial Three-Dimensional Secondary Instability of Compressible Boundary-

Layer Flows”, ATAA J., Vol. 29, No. 5, 688-696 (1991).

Balakumar, P., and M. R. Malik, "Waves Produced from a Harmonic Point Source in a Super-

sonic Boundary Layer", ATAA Paper No. 91-1646 (1991).

Bertolotli, F. P., Linear and Nonlinear Stability of Boundary Layers with Streamwise Varying

Properties, PhD Thesis, Ohio State University (1990).

Chang, C.-L., M. R. Malik, G. Erlebacher, and M. Y. Hussaini, "Compressible Stability of Grow-

ing Boundary Layers using Parabolized Stability Equations”, ATAA Paper No. 91-1636 (1991).

Stetson, K. F., E. R. Thompson, J. C. Donaldson, and L. G. Siler, "Laminar Boundary-Layer Sta-

| e Pt



12)

13)

14)

15)

16)

17)

18)

-27 -

bility Experiments on a Cone at Mach 8. Part 1: Sharp Cone", AIAA Paper No. 83-1761 (1983).

Korte, J. J., "An Explicit Upwind Algorithm for Solving the Parabolized Navier-Stokes Equa-
tions", NASA TP-3050 (1991).

Jacobs, P. A., "Single-Block Navier-Stokes Integrator”, JCASE Interim Report 18 (NASA Contrac-
tor Report 187613) (1991).

Kopriva, D. A., "Multidomain Spectral Solutions of High-Speed Flows Over Blunt Cones”, ATAA
Paper No. 92-0324 (1992).

Mangler, W., "Zusammenhang zwischen Ebenen und Rotationssymmetrischen Grenzschichten in
Kompressiblen Fluessigkeiten”, ZAMM 28, 97-103 (1948).

Malik, M. R., and R. E. Spall, "On the Stability of Compressible Flow Past Axisymmetric
Bodies", J. Fluid Mech., Vol. 228, 443463 (1991).

Marconi, F., M. Salas, and L. Ycager, "Development of a Computer Code for Calculating the
Steady Super/Hypersonic Inviscid Flow Around Real Configurations: Volume I--Computational
Technique”, NASA CR-2675 (1976).

Pruett, C. D, L. L. Ng, and G. Erlebacher, "On the Non-Uniqueness of the Parallel-Flow Approx-
imation", Proceedings of the ICASE/LaRC Workshop on Transition and Turbulence, July 8 -

August 2, 1991.



- 28 -

| N N Iorn Ty | Il [ [ I N T A A IR

"WAISAS 91eUIPIO0D pany-Apog [ "Sig

AnswwAs
JO SIXY <
S
x "
- _abpe
-Mﬂ laAel-Alepunog

N\— aABM YO0Us



-290 -

(119w T) Y §°g=_ S & KIOO[aA [eIpRy "7 “Sid
(x vo\_ —

0G0°0 G¢0°0

I — I

('s3d 0Gl) SNd —
(‘syd zolL) o189 *

9P0) SNd 'SA 3apOQ 1§
A}100|8 A |elpey

006G



- 30 -

TR TR LR RN R LRI [ T R | | [ - |

Y OT= X lmm JO SUOTBPALISP dAnBWINE Jo uosuedwo)) °¢ "SI

A

L ]

¥0°0 €00 ¢0°0 10°0 00°0

| I T I T [ T O—‘Il
- — wl
- —] @l.
. — .VI..
- [ 1 poyrews — A
|2 poyrewu *

4 ] 1 | o

0°C=_X UOHE}S
Spoyle|N om| o uosiiedwo)



-31-

-uonenba AjnunUod I Jo [ENPISAY 'y "SI

9/
G¢ 0¢ G| o G0 090
{ | T [ T | T | T .Vlu
— —H ¢—
, 1 o
)
- 0 o
-
' ] 0
B -1 ¢
] | 1 | 1 ] A | 1 .V
- 01X
0= X auo)
x

s|enpisey uolyenb3y Ajnunuo)



-32.

"21103ds ASYsAQay) Ay Jo Aedog 'S "31q

0

U
0cl 00FL 08 09 0O 0Oc¢
! | ! | ! | ! | ! |
| -
) | L | | | | | L |

0C—

Gl-

e4100dg



233 -

*SSOU YOI JUSWoR[dSIp 19Ke[-ATEpuUnoq JO UOUN[OAd oSimweansg ‘9 "Sij

X

-’
-
.®
-

-
e®”
-
®
-
-”
-

oje|d je|y —
dapuljho -
auos
Aioay} ~~

SsauXoly} juswasoe|ds|p

10°0

¢0°0

€0°0



.34 .

L L e I O A TR A I i

1§ 0'¢=_ X Je suonnquusip (5 Ao

-O[3A Tewou-[lem pue (q AI00[oA asimureans’ (e armeiodwa] °/ 81
O/ A
0°¢ Gl 0'1l G0 0°0

T [ | T | T O
— l
— 1 —,
_ N

9|_

- @ *
- 2U0D
| 49puljho 9
| @eid ey -

L | | i | 1 0 !

uolingliysiq s4njedsdws |



-35 .-

-O[9A [EULIOU-T[EM PUB (q AJIOO[dA ISIMUIEan

0°¢

1y 0'¢=_ X Te suonnquusip (0 A0

*@\*%

Gl 0l G0

¢ (e ammeroduny, L 'S

2U00 7
Japuljko
ejeld je|} —

- %0

- 90

- 80

- 0|

uoljhgiiysig A}o0|3A—N

AN



=36 -

I Q'g=_X 18 suonnqunsip (5 Ao
~O[A [eWLIOU-[[eM pUE (q AJID0[oA dsimweans* (v armesaduro] ) ‘31

S/

0°¢ Gl 0°1 G0 0°0

T .I.._. T | T I T w..l
- o2UO0D ™7 ol 4 9-—
i d9puljho .
- |eed ey T 1 v-
- PIOSIAUl ~ e | -

uoiyngriysiqg A}1o0joA—A




-37-

2u0d (0 ‘xopwho (q ‘aerd ey (B
10'¢=, X uoneis 1e paredwoo uonenbs Annunuod a1 Jo suudy ‘g “Sig

L/ A
G°¢C Gl 01| G0 0°0
j T | T [ T I T O.—.l
- — nl.)_.o..l
0°0
. o —| .
Voo (nd)e
v Ao .-
| L (e -1 G0
i ¢soond B
| l | | | | o._‘
o1e|d }e|d
SwJa |

uoilenb3y A1nuiluo)



- 38 -

"5U00 (0 IopurfAo (q ‘arepd ey (e
:0'¢=, X uoness je paredurod uonenba Anmunuod 9l Jo suuy], '8 8

S/ A
G ¢ 0°¢ G'I o'l G0 00
T I T I T I I I _ O.—.l

.
T e " o O
\] P
. L4
.

L o |4 G0

0°l
dapullhy

swJda]| uonlenb3y Ayinunuo)



-139.

N "9u0d (0 ISpUIfAd ‘
:('g=, X uoneEls Je paredwos uonenba bEmEcoUconw woﬁmcbwwa.%mwm

S/

G¢ 0¢ G| 01 G0 00

lllllllllllllllllllllllllllll

2uU0)
swJda| uolilenb3y Ajlnunuo)

0 lL—







Form Approved
OMB No. 0704-0188

REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of informanion 1s estimated to average | hour per response, including the time for
gatherning and maintaiming the data needed. and completing and reviewing the coilection af information Send comments r&:
collectian of informanian, including suggestions Tor ceducing this burden. to Washington Headquarters Services, Directorate
Davis Highway, Suite 1204, Arlington, VA 22202-4302. and to the Office of Management and Budget.

reviewing instructions, searching exnting data sources,
arding thus burden estimate or any ather aspect of this
or information Operations and Reports, 1215 JeHerson
Paperwork Reduction Project (0704-0188), Washington, 0C 20503.

1 AGENCY USE ONLY (Leave blank) |2. REPORT DATE

December 1991

3. REPORT TYPE AND DATES COVERED
Contractor Report

. TITLE AND SUBTITLE S. FUNDING NUMBERS

On the Wall-Normal Velocity of the Compressible

Boundary-Layer Equations C NAS1-18599

WU 505-59-53-02

. AUTHOR(S)
C. David Pruett

_ PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER
Analytical Services and Materials, Inc.

107 Research Drive
Hampton, VA 23666

_SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

National Aeronautics and Space Administration
Langley Research Center

Hampton, VA 23665-5225 NASA CR-4419

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: James C. Townsend

e —————————

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified-Unlimited

Subject Category: 02

13, ABSTRACT (Maximum 200 words)

Numerical methods for the compressible boundary-layer equations are facilitated by transformation from the physical
(x.y) plane 10 a computational (§.1) plane in which the evolution of the flow is "slow" in the time-like § direction. The
commonly used Levy-Lees transformation results in a computationally well-behaved problem for a wide class of non-
similar boundary-layer flows, but it complicates inlerpretation of the solution in physical space. Specifically, the transfor-
mation is inherently nonlinear, and the physical wall-normal velocity is ransformed out of the problem and is not readily
recovered. In light of recent rescarch which shows mean-flow non-parallclism to significantly influence the stability of
high-speed compressible flows, the contribution of the wall-normal velocity in the analysis of stability should not be rou-
tinely neglecied. Conventional methods extract the wall-normal velocity in physical space from the continuity equation,
using finite-difference techniques and interpolation procedures. The present spectrally-accurate method cxtracts the wall-
normal velocity directly from the transformation itself, without interpolation, leaving the continuity equation free as a
check on the quality of the solution. The present method for recovering wall-normal velocity, when used in conjunction
with a highly-accurate spectral collocation method for sotving the compressible boundary-layer equations, results in a
discrete solution which is extraordinarily smooth and accurate, and which satisfies the continuity equation nearly to
machine precision. These qualities make the method well suited 1o the computation of the non-parallel mean flows need-
ed by spatial direct numerical simulations (DNS) and parabolized stability equation (PSE) approaches to the analysis of
stability.

14. SUBJECT TERMS Boundary-layer equations; compressible flow; 15. NUMBER OF PAGES

spectral-collocation methods; wall-normal velocity; 40
stability theory 16. PchEoc;mE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500

Standard Form 298 (Rev 2-89)
Prescribed by ANSI Std. 23918

298-102
NASA-Langley, 1991






